ALCF Early Science Program

Climate-Weather modeling studies Using a Prototype Global Cloud-System Resolving Model

PI: V. Balaji, Princeton University

Presenter: Chris Kerr, GFDL

October 18-19, 2010

Project Overview:

- Study the effect of clouds in climate-weather models:
 - Clouds remain largest source of uncertainly in global climate models
 - Experiments to be performed with:
 - > Atmospheric models
 - > Coupled atmosphere, ocean, ... models
- Experiments will focus on 2008 "Year of Tropical Convection" research program:
 - ➤ 12 km HIRAM-hydrostatic model
 - > 3.5 km HIRAM-non-hydrostatic model

Scientific Field: Climate

Codes: HIRAM

Computational Approach:

Science Infrastructure:

Contains: atmospheric, ocean, lands, ice, chemistry, ...

Model Software Infrastructure (FMS):

- Hybrid programming model (MPI and OpenMP)
- Memory footprint
- I/O scheme

Workflow infrastructure (FRE):

- Model setup and configuration
- Post-processing and analysis scripts
- Data transfer between ANL and GFDL
- Data portal at ANL

Model Performance and Scalability:

Performance of Held-Suarez with Non-Hydrostatic Cubed-Sphere Atmospheric Dynamical Core at 4.5km with 32 Levels on IBM:BG/P

Software Development Plans:

- ➤ Improve MPI and OpenMP implementations
- Improve load-imbalance
- ➤ Improve I/O schemes
- Improve single core performance
- Perform detailed analysis of multiple core scaling characteristics with MPI and OpenMP

Plans for Next 6-Months:

Experiments:

- Complete 5-year experiment with 12km atmospheric model
- Begin 3-month experiment with 3.5km atmospheric model

Software Development:

> Improve single and multi-core performance of the code

Participation:

> 3- scientists added to the project

Questions: